Meosis
2 Pages 424 Words
The process, during which the germ cells are generated is called meiosis. It represents nature's solution to the problem of chromosome doubling that would occur, if two diploid cells, i.e. two cells with a double set of chromosomes would fuse. Accordingly does meiosis produce haploid germ cells, with maternal and paternal germ cell fusing at fertilization and thus generating a diploid fusion product, the zygote. Meiosis is made up by two subsequent processes, both of which resemble mitosis. In the first process are the homologous chromosomes separated. It has an unusually long prophase that is subdivided into different stages They are followed by metaphase, anaphase and telophase. Two nuclei fuse upon fertilization, so that the number of chromosomes does necessarily double. If this thought is spun further, would an greater growth of the number of chromosomes from generation to generation have to be expected. This is not the case, because the chromosomes are reduced to half their normal number in germ cell production. This process is called meiosis. It consists of two successive mitosis-like divisions: in the first division is the number of chromosomes reduced to their half, the second is a normal mitosis. Each germ cell contains a complete set of chromosomes, a haploid set. Accordingly are the cells haploid and zygotes and the body cells that stem from them are diploid, because they contain two equal sets of chromosomes, one from the mother and one from the father. They exist, especially in plants. At the beginning of meiosis, in prophase 1 the plate breaksdown and chromosomes become visible as in mitosis (1). The chromosomes have replicated but individual chromatids are not visible. Instead of lining up on a metaphase, as in mitosis, chromosomes come together in pairs (2). Each chromosome in a pair is similar in structure (homologous), but would have come originally from different parents. Later in prophase the homologous pairs twist ...